OIL AND GAS POTENTIAL OF KEWEENAWAN MIDCONTINENT RIFT SYSTEM IN NORTHWESTERN WISCONSIN

Richard A. Paull

ABSTRACT

Extensive leasing and seismic exploration along the Keweenawan Midcontinent Rift System from Upper Michigan into Kansas centered in northwestern Wisconsin during 1983 -- 1985. Detailed geochemical and geophysical justification for this petroleum play remains confidential, but regional geological knowledge encourages speculation.

Continental rifting with extrusion and intrusion of igneous rocks caused subsidence in northwestern Wisconsin, and 6,100 m of Upper Keweenawan conglomerate, shale, and sandstone accumulated to form the Oronto Group (Copper Harbor Conglomerate, Nonesuch Shale, and Freda Sandstone). The slightly metamorphosed rock is dominantly red beds deposited as alluvial fans grading upward into finer, texturally and mineralogically more mature lacustrine and fluvial deposits. After 50 to 90 km of separation the rift failed and axial uplift created the St. Croix Horst with subsiding flank basins. Up to 1,500 m of sandstone with minor shale (Bayfield Group) accumulated in basins adjacent to the eroding horst.

Shale and siltstone of the Nonesuch contain sufficient organic matter that oil seeps occur within the formation in Upper Michigan. As the only source rock and the most continuous seal, the persistence of the Nonesuch is critical to the petroleum potential of northwestern Wisconsin. A flawed analogy with giant oil and gas fields in Siberia, U.S.S.R., provides additional support. Possible traps include anticlines, reverse faults with upthrown basalt seals, depositional truncation against basement highs, porous lenses, and an angular unconformity.

Keweenawan petroleum potential is heightened by inexpensive leases for large tracts of public land, relatively cheap drilling in a politically stable area, and the potential for discovering gas storage. Wisconsin, however, has high taxes and strong environmental laws, and drilling in Lake Superior would be prohibited even if a lakeside field were discovered.

Exploration activity has waned due to current economics in the petroleum industry, and Amoco cancelled a 1985 wildcat in Bayfield County that would have evaluated the St. Croix Horst. A significant upturn in hydrocarbon prices will be required to rekindle interest in northwestern Wisconsin.

INTRODUCTION

Interest in the petroleum potential of the Keweenawan Midcontinent Rift System in northwestern Wisconsin was initially stimulated by oil seeps from the Upper Keweenawan Nonesuch Formation in the Copper Range Mine, White Pine, Ontonagon County, Michigan (fig. 1). This occurrence was described by Eglinton and others (1964), Barghoorn and others (1965), and Johns and others (1966). Subsequently, the oil was sampled and studied by several major oil companies in the early 1970s. Industry interest in the Keweenawan oil occurrence undoubtedly was stimulated by the 1962 discovery of significant gas and oil reserves within Upper Precambrian rocks in Siberia, U.S.S.R. (Meyerhoff, 1980). More recent hydrocarbon occurrences in Upper Precambrian rock in Australia, China, and Montana helped to sustain the enthusiasm for the potential of the Midcontinent Rift System.

The presence of oil at White Pine established source and generation, and surface studies indicated potential reservoirs and traps were present. This information, coupled with the belief that oil prices would exceed \$50/barrel and natural gas would reach at least \$8.00/Mcf in the late 1980s, resulted in extensive geophysical activity, intensive leasing, and some recent drilling along the Keweenawan Rift System from upper Michigan to Kansas during the early 1980s (fig. 1).

Leasing for oil and gas exploration in northwestern Wisconsin started in 1983, and more than 690,000 acres were under contract to at least 7 oil companies by 1986. Standard terms per acre were \$1.00 bonus and \$1.00 rental/year. Royalty interest was 1/8, and the terms of most leases were 3 years. In addition to leasing activity, more than 500 miles of contract and speculative seismic lines were run in Ashland and Bayfield Counties, Wisconsin.

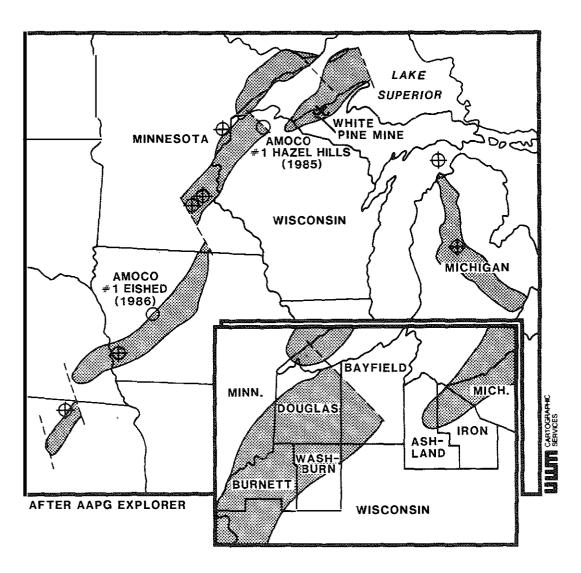


Figure 1. The Keweenawan Midcontinent Rift System is delineated by the stippled pattern. Selected dry holes are shown by crossed circles, and the location of the Copper Range Mine is indicated. Open circles are two suspended test wells announced by Amoco in 1985 (No. 1 Hazel Hills) and 1986 (No. 1 Eished).

GEOLOGIC SETTING

The Keweenawan Midcontinent Rift System is defined in the subsurface by the Midcontinent Gravity High, which cross-cuts older Precambrian structural patterns (Lyons and O'Hara, 1982). This feature may also extend southeastward from Upper Michigan through Lower Michigan, and possibly farther southward (fig. 1). The geologic evolution of the entire Midcontinent Rift System was systematically reviewed by Dickas (1986).

Surface exposures of the Keweenawan Rift System are limited to Upper Michigan and northwestern Wisconsin, where the veneer of Paleozoic rocks was removed by erosion. A brief summary of the geologic history of this region follows.

Continental rifting of 50 to 90 km due to crustal attenuation associated with extensive extrusion and intrusion of Lower and Middle Keweenawan rocks formed a subsiding sedimentary basin about 1.1 Ga (table 1). This basin was filled in by up to 6,100 m of the Oronto Group (basal Copper Harbor Conglomerate with associated volcanic, medial Nonesuch Shale, and uppermost Freda

Table 1. Comparison of Siberian and Midcontinent petroleum basins.

E. SIBERIA, U.S.S.R. PROTEROZOIC ANALOGY

	SIBERIA	WISCONSIN
TECTONICS:	Craton-Platform Deposits Little Deformation C Evaporite Seals	Craton-Failed Rift Uplift and Erosion No Paleozoics Remain
SOURCE:	Max. Burial 600m Generation Established Marine Sh. Interbeds Proterozoic (925 Ma Gas, Condensate, Oil	Max. Burial 600m? Generation Established Lacustrine Sh. Unit Proterozoic <1040 Ma Gas?, Condensate?, Oil??
RESERVOIR:	Marine Ss. Intergranular - Low	Fluvial Ss. Intergranular – Low
TRAP:	Interbedded Sh. Seals Pinchout on Highs Lenses Major Folds 2000+m Depth	Nonesuch & Freda Ss. w/Sh Pinchout on Highs? Lenses? Anticlines Reverse Faults 2000+m Depth
POTENTIAL:	Huge Area 200 Tcf Gas 100 Bill. Bbls. Oil	Small Area Potential Unknown

Note: Siberian information is from Meyerhoff (1980).

Sandstone) (fig. 2). This group is dominated by a fining upward, texturally and mineralogically immature sequence of red beds deposited as alluvial fans and fluvial sediments. The exception is the Nonesuch Formation, which is an anoxic lacustrine deposit.

The rift failed after deposition of the Oronto Group, and compression resulted in the uplift of a central horst block (St. Croix Horst) flanked by sub-

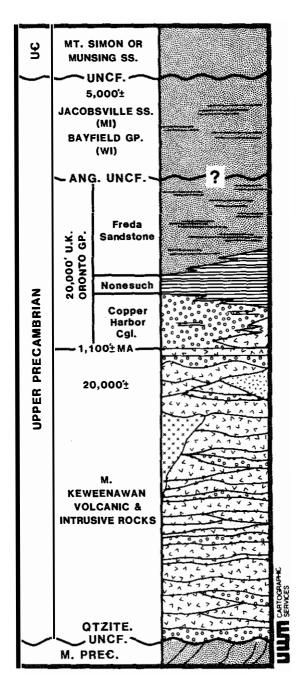


Figure 2. Summary of upper Precambrian (Keweenawan) stratigraphy in Upper Michigan and northwestern Wisconsin.

siding basins (fig. 3). Up to 1,500 m of uppermost Precambrian Bayfield Sandstone accumulated in angular discordance on the Freda Sandstone in the flank basins (fig. 2). The Bayfield is a texturally and mineralogically upward-maturing succession of nonmarine sandstone that was derived, at least in part, from erosion of the Oronto Group on the St. Croix Horst.

An erosional interval in northwestern Wisconsin preceded Paleozoic deposition during the Late Cambrian, Ordovician, and Silurian. It is also possible that Devonian and Upper Cretaceous rocks were deposited in this area. In all, some 650 m of post-Precambrian sedimentary rocks were deposited and subsequently removed prior to deposition of Pleistocene glacial deposits, which mantle much of the countryside and obscure bedrock relations.

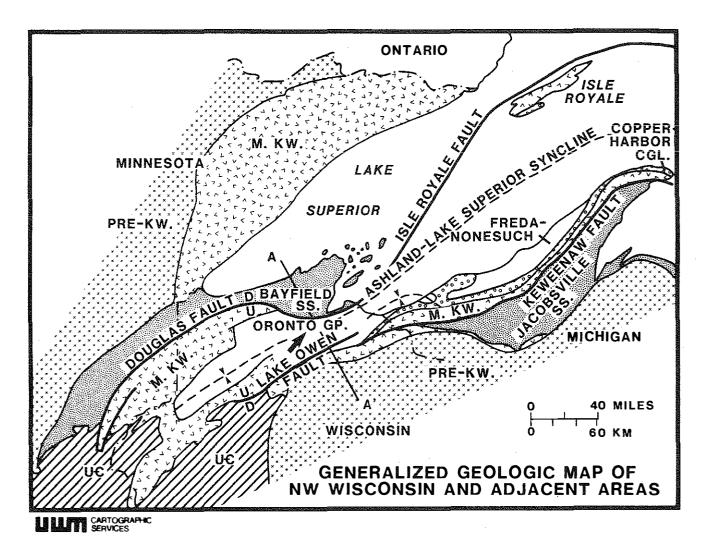


Figure 3. Generalized geologic map of northwestern Wisconsin and adjacent areas. The St. Croix Horst is defined by the Douglas and Lake Owen Faults. The location of the suspended Amoco test well in the Ashland-Lake Superior Syncline is indicated by the arrow near the center of the map. The abbreviation KW is used for Keweenawan, and the throw of major faults is indicated by U (up) and D (down).

PETROLEUM POTENTIAL

The petroleum potential of a frontier area like the Midcontinent Rift System is dependent upon the fortuitous association in time and space of source, reservoir, and trap. Each of those aspects is considered below.

Source

As previously described, the shale of the Nonesuch Formation is the only potential source rock in the dominantly red bed sequence of Upper Precambrian rock in northwestern Wisconsin (figs. 4 and 5). The organic content of samples associated with oil seepage at White Pine is about 0.5 perent C (Dickas, 1986, p. 232). The origin of the oil is attributed to fungi, algae-like "sporomorphs", and bacteria deposited in a lacustrine environment (Moore and others, 1969).

Rock in Minnesota (Solar Church Formation) correlative with the Nonesuch Formation is lower in organic content, and well past the stability stage for oil (Hatch and Morey, 1985). The paleogeothermal history of Upper Keweenawan rock in northwestern Wisconsin is unknown, but the presence of low-grade metamorphic minerals suggests the possibility of high heat flow. Maximum burial of about 6,000 m in the basins flanking the St. Croix Horst seems feasible. If we assume that this depth estimate is correct and the geothermal gradient was "normal" (1° F/50 ft), an extrapolation back 1.1 Ga would suggest that no hydrocarbons remain in the deeper part of the flanking basins. Although temperature was less severe on the St. Croix Horst and oil is stable at White Pine, I would expect only methane gas in this block in northwest Wisconsin.

The Nonesuch Formation is up to 200 m thick in Michigan, and it thins southwestward. It may, however, thicken basinward (northwestward) (Daniels, 1982). The thickness, eastward extent, and organic character of this formation in the subsurface of Bayfield and Douglas Counties, Wisconsin is the most important consideration in assessing the petroleum potential of northwestern Wisconsin.

Reservoir

Potential reservoir rocks within the Upper Keweenawan sequence are conglomerate and sandstone. As previously described, textural and mineralogical maturity increase upward, and these changes result in improved reservoir characteristics in younger rock. Unfortunately, the best reservoirs are farther from the Nonesuch Formation.

Carbonate cement, which is ubiquitous within Upper Keweenawan clastic rock, severely limits the porosity and permeability of many potential reservoir rocks. In spite of this general concern, surface samples indicate porosities up to 15 percent are locally present in all units except the Nonesuch. Some of this porosity may result from the leaching of carbonate cement at outcrops.

Traps

Both stratigraphic and structural traps can be expected in the Midcontinent Rift System within northwestern Wisconsin. Stratigraphic traps include lenticular sand and conglomerate bodies deposited as bars, beaches, alluvial fans, and turbidites in the subsiding Lake Superior Basin during deposition of the lacustrine Nonesuch Formation (fig. 4).

Although small stratigraphic plays are not a primary objective in frontier exploration, petroleum accumulations in such traps are favored in areas of high heat flow. Furthermore, these types of traps are important producers in the Precambrian of eastern Siberia.

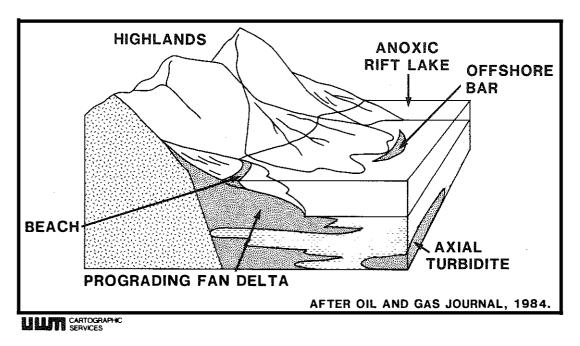


Figure 4. Hypothetical depositional setting for potential reservoir rock associated with accumulation of the Nonesuch Formation in an anoxic rift lake.

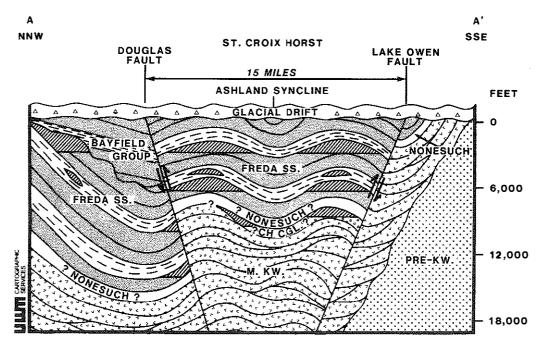


Figure 5. Hypothetical cross section A-A' (fig. 3) across the St. Croix Horst illustrating a veriety of entrapment possibilities within Upper Keweenawan rock in northwestern Wisconsin. Possible oil and gas accumulations are indicated by steep diagonal lines, and include depostional pinchouts against basement highs, lenticular sand bodies, anticlines, an angular unconformity, and the placement of impervious lavas against porous sediment along the Douglas Fault. The approximate position of the suspended Amoco location is near the probable axis of the Ashland-Lake Superior Syncline.

Other possibilities for stratigraphic entrapment include sedimentary pinchouts of the Copper Harbor Conglomerate against impervious highs on the Middle Keweenawan volcanic basement, and along the angular unconformity between the Freda Formation and the overlying Bayfield Group (fig. 5). In both instances seals of impervious shale are required.

Structural traps include anticlines formed during the compressional episode that created the St. Croix Horst (fig. 5) The reverse Douglas Fault brings impervious Middle Keweenawan lavas over porous Upper Keweenawan sedimentary rock to provide another potential structural trap (fig. 5). The existence of both types of structures is supported by surface observations.

The structures described above formed during development of the St. Croix Horst. If the geothermal gradient was high, hydrocarbon migration may have occurred prior to the formation of these traps. If so, the petroleum potential of the area is minimal. A similar concern for the Minnesota segment of the Midcontinent Rift System was described by Hatch and Morey (1985).

One of the primary concerns with most of the entrapment possibilities described above involves the general paucity of shale to form effective seals. The Nonesuch is the thickest and most extensive impervious horizon within the Upper Keweenawan succession. Interbedded shales make up 60 percent of the Oronto Group, but less than 1 percent of the Bayfield Group (Dickas, 1986). The vertical distribution, sealing effectiveness, and lateral persistance of shale interbeds in both units is a critical unknown.

SIBERIAN ANALOGY

The early publicity on the Keweenawan Midcontinent Rift System by trade journals, industry newsletters, and local newspapers repeatedly referenced the significant occurrences of gas and oil in upper Precambrian rock in eastern Siberia, U.S.S.R. (Lee and Kerr, 1983; Dickas, 1984). Analysis of this comparison discloses significant differences in the geologic history of the two areas (table 1).

The most important flaws with the Siberian analogy include major differences in the general tectonic setting and depositional environment. The hydrocarbon-rich, Precambrian rocks in Siberia are marine cratonic sedimentary rock, whereas those of the U.S. midcontinent Keweenawan are nonmarine sedimentary rock that accumulated within a failed rift. Another significant difference involves the high percentage of interbedded shale within the Precambrian sequence and the evaporites within the Cambrian in Siberia. These provide a series of very effective seals, which are probably lacking in the Keweenawan of northwestern Wisconsin. Finally, there is a major size discrepancy involved in the comparison between the productive Precambrian area in eastern Siberia and the entire Midcontinent Rift System (fig. 6).

RECENT DEVELOPMENTS

In 1985 Amoco announced and subsequently suspended a 12,000-foot test well about 15 miles southwest of Ashland, Wisconsin, in Bayfield County (figs. 1, 3, and 5). Another rift test was announced by Amoco late in 1985 for Carroll County, Iowa. As oil and gas prices plunged in early 1986, this well was also suspended.

During the summer of 1985, Grant-Norpac, Inc., conducted an extensive speculative seismic survey on several of the Great Lakes, including Lake Superior. This action infuriated the governors of the eight Great Lakes states, and re-

SIBERIAN ANALOGY

1,737,000 Km²
200 Tcf GAS + CONDENSATE
&
10 MILLION BARRELS OIL

125,000 Km² (7%) MIDCONTINENT RIFT

FROM: MEYERHOFF (1980) AND DICKAS (1986) SERVICES

Figure 6. Diagrammatic areal comparison of the productive Precambrian region in eastern Siberia with the Midcontinent Rift System from Kansas through Lower Michigan. As shown, the Rift is only 7 percent of the Siberian area.

sulted in a proclamation in February 1986, opposing petroleum exploration and drilling in the lakes.

A significant indication of continuing industry interest in the petroleum potential of northwestern Wisconsin will be forthcoming in the fall of 1986 when many early leases are due to expire. The ultimate test, however, will require a wildcat.

CONCLUSIONS

The petroleum potential of the Midcontinent Rift System in northwestern Wisconsin is marginal. Although significant production from Proterozoic rock in eastern Siberia establishes the hydrocarbon potential of older rock, failed rifts are high risk prospects throughout the world (Kingston and others, 1983). In the rare cases when failed rifts are productive, the favored setting is central horst blocks (Kingston and others, 1983).

Volumetrically modest amounts of source rock with relatively low carbon content (Nonesuch Formation) and of uncertain lateral extent are also bother—some. The probable lack of sufficient shales to serve as trap seals is another concern.

On the positive side, the Wisconsin part of the Midcontinent Rift System is a frontier area with large, inexpensive tracts of public acreage available. This situation allows major companies the opportunity to control large acreage

blocks so they may employ technology (seismic and organic geochemistry) to minimize risk. Drilling will be comparatively shallow, and relatively low cost.

ACKNOWLEDGMENTS

Robert Seasor and Timothy Rohrbacher made it possible for me to examine the Nonesuch oil seepages in the Copper Range Mine, White Pine, Michigan, in 1972. Rachel K. Paull contributed on numerous field excursions to examine Keweenawan rock in Upper Michigan and Wisconsin during the past 15 years. Recent conversation with Albert B. Dickas and M.G. Mudrey, Jr. helped to refine my understanding of the petroleum potential of northwestern Wisconsin. In spite of all this help, I accept responsibility for any speculation that proves erroneous when the first well tests my theories.

REFERENCES

- Aldrich, H.R., 1929, The geology of the Gogebic Iron Range of Wisconsin: Wisconsin Geological and Natural History Survey Bulletin 71, 279 p.
- Anderson, R.R., and Black, R.A., 1982, Geologic interpretations from geophysical models of the Midcontinent geophysical anomaly in southwest Iowa, in Regional tectonics and seismicity of southwestern Iowa:

 Annual Report of U.S. Nuclear Regulatory Commission NUREG/CR-2548, p. 27-41.
- Arvidson, R.E., Guinness, E.A., Strebeck, J.W., Davies, G.F., and Schulz, K.J., 1982, Image processing applied to gravity and topography data covering the continental U.S.: EOS, Transactions of the American Geophysical Union, 63, p. 261-265.
- Austin, G. S., 1970, Deep stratigraphic test well near Hollandale, Minnesota: Minnesota Geological Survey Report of Investigations 12, 52 p.
- Balashova, M.M., Koblova, A.Z., and Provorov, V.M., 1983, Late Precambrian petroleum formation in the northern Ural-Volga region: International Geology Review, v. 25, p. 1455-1458.
- Barghoorn, E.S., Meinschein, W.G., and Schopf, J.W., 1965, Paleobiology of a Precambrian shale: Science, v. 148, p. 461-472.
- Barghoorn, E.S., and Schopf, J.W., 1966, Micro-organisms three billion years old from the Precambrian of South Africa: Science, 152, p. 758-763.
- Becker, L.E., and Patton, J.B., 1968, World occurrence of petroleum in Pre-Silurian rocks: American Association of Petroleum Geologists Bulletin, v. 52, p. 224-245.
- Brown, A.C., 1971, Zoning in the White Pine copper district, Ontonagon County, Michigan: Economic Geology, v. 66, p. 543-573.
- Brown, L., Jensen, L., Oliver, J., Kaufman, S. and Steiner, D., 1982, Rift structure beneath the Michigan Basin from COCORP profiling: Geology, v. 10, p. 645-649.
- Butler, B.S., and Burbank, W.S., 1929, The copper deposits of Michigan: U.S. Geological Survey Professional Paper 144, 238 p.
- Cannon, W.F., and Davidson, D.M., Jr., 1982, Bedrock geologic map of the Lake Superior region *in* Wold, R.J. and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, plate 1, scale 1:1,000,000.
- Catacosinos, P.A., 1981, Origin and stratigraphic assessment of pre-Mt. Simon clastics (Precambrian) of Michigan Basin: American Association of Petroleum Geologists Bulletin, v. 69, p. 1617-1620.
- Chase, C.G. and Gilmer, T.H., 1973, Precambrian plate tectonics: the Midcontinent Gravity High: Earth and Planetary Science Letters, 21, p. 70-80.

- Chaudhuri, S., and Faure, G., 1967, Geochronology of the Keweenawan rocks, White Pine, Michigan: Economic Geology, v. 62, p. 1011-1033.
- Compton, W., and Arriens, P.A., 1968, The Precambrian geochronology of Australia: Canadian Journal Earth Sciences, v. 5, p. 561-583.
- Coons, R.L., 1966, Precambrian basement geology and Paleozoic structure of the Mid-Continent gravity high: University of Wisconsin, Madison, unpublished Ph.D. dissertation, 167 p.
- Cooper, J.D., Miller, R.H., and Patterson, J., 1986, A trip through time: principles of historical geology: Merrill Publishing Company, 469 p.
- Craddock, C., 1972a, Regional geologic setting, *in* Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geological Survey, p. 281-291.
- Craddock, C., 1972b, Keweenawan geology of east-central and southeastern Minnesota, *in* Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geological Survey, p. 416-424.
- Craddock, C., Mooney, H.M., and Kolehmainen, V., 1970, Simple Bouguer gravity map of Minnesota and northwestern Wisconsin: Minnesota Geological Survey, Miscellaneous Map Series, Map M-10, scale 1:1,000,000.
- Craddock, C., Thiel, E.E., and Gross, B., 1963, A gravity investigation of the Precambrian of southeastern Minnesota and western Wisconsin: Journal of Geophysical Research, v. 68, p. 6015-6032.
- Daniels, P.A., Jr., 1982, Upper Precambrian sedimentary rocks: Oronto Group, Michigan-Wisconsin, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 107-133.
- Davidson, D.M., Jr., 1982, Geological evidence relating to interpretation of the Lake Superior basin structure, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 5-14.
- Davidson, D.M., Jr., and Mudrey, M.G., Jr., 1986, Mid-Continent Rift: New Frontier in an Old Area (abs): American Association of Petroleum Geologists Bulletin, v. 70, p. 579.
- Denning, R.M., 1949, The petrology of the Jacobsville sandstone, Lake Superior: Michigan College of Mineral Technology, Houghton, unpublished Master's thesis.
- Dickas, A.B., 1984, Midcontinent rift system: Precambrian hydrocarbon target: Oil and Gas Journal, October 15, 1984, p. 151-159.
- Dickas, A.B., 1986, Comparative Precambrian stratigraphy and structure along the Midcontinent Rift: American Association of Petroleum Geologists Bulletin, v. 70, p. 225-238.

- Dorr, J.A., and Eschmann, D.F., 1973, Geology of Michigan: University of Michigan Press, Ann Arbor, 476 p.
- DuBois, P.M., 1962, Paleomagnetism and correlation of Keweenawan rocks: Geological Survey of Canada Bulletin 71, 75 p.
- Dunlop, J.S.R., Muir, M.D., Milne, V.A., and Groves, D.I., 1978, A new microfossil assemblage from the Archean of western Australia: Nature, v. 274, p. 676-678.
- Dunshi, Y., and Guangming, Z., 1980, Exploration practice in and prospects of the buried-hill oil fields in north China *in* Mason, J.F., ed., Petroleum Geology in China: Penn Well Publishing Company, Tulsa, Oklahoma, 263 p.
- Durkee, E.F., 1982, Oil and gas developments in Australia in 1981: American Association of Petroleum Geologists Bulletin, v. 66, p. 2321-2348.
- Durkee, E.F., 1983, Oil and gas developments in Australia in 1982: American Association of Petroleum Geologists Bulletin, v. 67, p. 1827-1848.
- Dutton, C.E., and Bradley, R.E., 1970, Lithologic, geophysical, and mineral commodity maps of Precambrian rocks in Wisconsin: U.S. Geological Survey Miscellaneous Geologic Investigations Map 1-631, sheet 3 of 6, scale 1:500,000.
- Eglinton, G., Scott, P.M., Belsky, T., Burlingame, A.L., and Calvin, M., 1964, Hydrocarbons of biological origin from a one-billion years old sediment: Science, v. 145, p. 263-264.
- Elmore, R.D., and Daniels, P.A., Jr., 1980, Depositional system model for Upper Keweenawan Oronto Group sediments, northern peninsula Michigan (abs): American Geophysical Union Transactions, v. 61, p. 1195.
- Engel, A.E.J., Nagy, B., Nagy, L.A., Engel, C.G., Kremp, G.O.W., and Drew, C.M., 1968, Alga-like forms in Onverwacht Series, South Africa: oldest recognized lifelike forms on earth: Science, v. 161, p. 1005-1008.
- Farnham, P.R., 1967, Crustal structure in the Keweenawan province of east central Minnesota and western Wisconsin: University of Minnesota, St. Paul, unpublished Ph.D. dissertation, 464 p.
- Fowler, J.H., and Kuenzi, W.D., 1978, Keweenawan turbidites in Michigan (deep borehole red beds): A foundered basin sequence developed during evolution of a protoceanic rift system: Journal of Geophysical Research, v. 83, p. 5833-5843.
- Galloway, W.E., and Hobday, D.K., 1983, Terriginous clastic depositional systems: Springer-Verlag, 423 p.
- Gardner, F.J., 1963, Amadeus next Aussie oil producer?: Oil and Gas Journal, September 16, 1963, 157 p.

- Glaessner, M.F., 1961, Pre-cambrian animals: Scientific American, v. 204, p. 72-78.
- Grant, U.S., 1901, Preliminary report on the copper-bearing rocks of Douglas County, Wisconsin (2nd ed.): Geological and National History Survey Bulletin 6, 83 p..
- Green, J.C., 1977, Keweenawan plateau volcanism in the Lake Superior region, in Baragar, W.R.A., ed., Volcanic regimes in Canada: Geological Association of Canada Special Paper 16, p. 407-422.
- Green, J.C., 1982, Geologic and geochemical evidence for the nature and development of the Middle Proterozoic (Keweenawan) Midcontinent Rift of North America: Tectonophysics, 94, p. 413-437.
- Green, J.C., 1983, Geologic and geochemical evidence for the nature and development of the Middle Paleozoic (Keweenawan) Midcontinent Rift of North America: Tectonophysics, v. 94, p. 413-437.
- Halbouty, M.T., King, R.E., Klemme, H.D., Dott, R.H., Sr., and Meyerhoff, A.A., 1970, Factors affecting formation of giant oil and gas fields and basin classification, *in* Halbouty, M.T., ed., Geology of giant petroleum fields: American Association of Petroleum Geologists Memoir 14, p. 528-555.
- Halls, H.C., 1966, A review of the Keweenawan geology of the Lake Superior region, *in* Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 3-27.
- Halls, H.C., 1982, Crustal thickness in the Lake Superior region, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 239-243.
- Halls, H.C., and West, G.F., 1971, A seismic refraction survey in Lake Superior: Canadian Journal of Earth Science, v. 8, p. 610-630.
- Hamblin, W.K., 1958, Cambrian sandstones of northern Michigan: Michigan Geological Survey Publication 51, 149 p.
- Hamblin, W.K., 1961, Paleogeographic evolution of the Lake Superior region from Late Keweenawan to Late Cambrian time: Bulletin of the Geological Society of American, v. 72, p. 1-18.
- Hamblin, W.K., 1965, Basement control of Keweenawan and Cambrian sedimentation in Lake Superior region: Bulletin of the American Association of Petroleum Geologists, v. 49, p. 950-958.
- Hatch, J.R., and Morey, G.B., 1985, Hydrocarbon source rock evaluation of Middle Proterozoic Solor Church Formation, North American Mid-Continent Rift System, Rice County, Minnesota: American Association of Petroleum Geologists Bulletin, v. 69, p. 1208-1216.

- Hinze, W.J., Kellogg, R. L., and O'Hara, N.W., 1975, Geophysical studies of basement geology of southern peninsula of Michigan: American Association of Petroleum Geologists Bulletin, v. 59, p. 1562-1584.
- Hinze, W.J., Wold, R.J., and O'Hara, N.W., 1982, Gravity and magnetic anomaly studies of Lake Superior, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 203-222.
- Hite, D.M., 1968, Sedimentology of the Upper Keweenawan sequence of northern Wisconsin and adjacent Michigan; University of Wisconsin, Madison, unpublished Ph.D. dissertation, 202 p.
- Holmes, A., 1965, Principles of physical geology: Ronald Press Company, 1288 p.
- Hubbard, H.A., 1975, Keweenawan geology of the North Ironwood, Ironwood and Little Girls Point quadrangles, Gogebic County, Michigan: U.S. Geological Survey Open-file report OF 75-152, 23 p.
- Irving, R.D., 1883, The copper-bearing rocks of Lake Superior: U.S. Geological Survey Monograph 5, 464 p.
- Johns, R.B., Belsky, T., McGarthy, E.D., Burlingame, A.L., Haug, P. Schoes, H.K., Richter, W., and Calvin, M., 1966, The organic geochemistry of ancient sediments Part II; Geochimica Cosmochimica Acta, v. 30, p. 1191-1222.
- Jones, D.J., 1956, Introduction to microfossils: Harper and Brothers Publishers, 406 p.
- Kalliokoski, J., 1975, Chemistry and mineralogy of Precambrian paleosols in northern Michigan: Geological Society of America Bulletin, v. 86, p. 371-376.
- Kalliokoski, J., 1982, Jacobsville Sandstone, in Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 147-155.
- Kay, M., 1951, North American geosynclines: Geological Society of America Memoir 48, 143 p.
- Kelly, W.C., and Nishioka, G.K., 1985, Precambrian oil inclusions in late veins and the role of hydrocarbons in copper mineralization at White Pine, Michigan: Geology, v. 13, p. 334-337.
- Kemp, A.L.W., Dell, C.J., and Harper, N.S., 1978, Sedimentation rates and a sediment budget for Lake Superior: Journal of Great Lakes Research, p. 276-287.
- King, E.R. and Zietz, I., 1971, Aeromagnetic study of the Midcontinent Gravity High of central United States: Bulletin of the Geological Society of America, v. 82, p. 2187-2207.

- Kingston, D.R., Dishroon, C.P., and Williams, P.A., 1983, Hydrocarbon plays and global basin classification: American Association of Petroleum Geologists Bulletin, v. 67, p. 2194-2198.
- Klasner, J.S., King, E.R., and Jones, W.J., 1985, Geologic interpretation of gravity and magnetic data for northern Michigan and Wisconsin, *in*Hinze, W.J., ed., The utility of regional gravity and magnetic anomaly maps: Society of Exploration Geophysicists, p. 267-286.
- Lane, A.C., and Seaman, A.E., 1907, Notes on the geological section of Michigan, Part 1. The pre-Ordovician: Journal of Geology, v. 15, p. 680-695.
- Lee, C.K., and Kerr, S.D., Jr., 1984, Midcontinent rift a frontier oil province: Oil and Gas Journal, August 13, 1984, p. 145-150.
- Levin, H.L., 1983, The earth through time: Saunders College Publishing, 513 p.
- Lidiak, E.G., 1972, Precambrian rocks in the subsurface of Nebraska: Nebraska Survey Bulletin 26, 41 p.
- Linder, A.W., 1984, Oil and gas development in Australia in 1983: American Association of Petroleum Geologists Bulletin, v. 68, p. 1600-1616.
- Linder, A.W., 1985, Oil and gas development in Australia in 1984: American Association of Petroleum Geologists Bulletin, v. 69, p. 1856-1870.
- Long, D.G.F. and Young, G.M., 1978, Dispersion of cross-stratification as a potential tool in the interpretation of Proterozoic arenites: Journal Sedimentary Petrology, v. 48, p. 857-862.
- Luetgert, J.H. and Meyer, R.P., 1982, Structure of the western basin of Lake Superior from cross structure refraction profiles, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 245-255.
- Lyons, P.L., 1959, The Greenleaf anomaly, a significant gravity feature, *in* Hambleton, W.M., ed., Symposium on the geophysics of Kansas: Kansas State Geological Survey Bulletin 137, p. 105-120.
- Lyons, P.L., and O'Hara, N.W., 1982, Gravity anomaly map of the United States (exclusive of Alaska and Hawaii): Society of Exploration Geophysicists, scale 1:2,500,000, 2 sheets.
- McCulloh, T.H., 1973, Oil and gas, *in* D.A. Brobst and W.P. Pratt, eds., United States mineral resources: U.S. Geological Survey Professional Paper 820, p. 477-496.
- McKirdy, D.M., 1974, Organic geochemistry in Precambrian research: Precambrian Research, v. 1, p. 75-137.
- Meinschein, W.G., 1965, Soudan Formation: Organic extracts of early Precambrian rocks: Science, v. 150, p. 601-605.

- Meinschein, W.G., Barghoorn, E.S., and Schopf, J.W., 1964, Biological remnants in a Precambrian sediment: Science, v. 145, p. 262-263.
- Meyerhoff, A.A., 1980, Geology and petroleum field in Proterozoic and Lower Cambrian strata, Lena-Tunguska petroleum province, eastern Siberia, U.S.S.R., *in* Halbouty, M.T., ed., Giant oil and gas fields of the decade 1968-1978: American Association of Petroleum Geologists Memoir 30, p. 225-256.
- Mooney, H.M., Farnharm, P.R., Johnson, S.H., Volz, G., and Craddock, C., 1970, Seismic studies over the Midcontinent Gravity High in Minnesota and northwestern Wisconsin: Minnesota Geological Survey Report of Investigations 11, 191 p.
- Moore, L.R., Moore, J.R.M., and Spinner, E., 1969, A geomicrobiological study of the Precambrian Nonesuch Shale: Yorkshire Geological Society Proceedings, v. 37, p. 351-394.
- Morey, G.B., 1967, Stratigraphy and petrology of the type Fond du Lac Formation, Duluth, Minnesota: Minnesota Geological Survey Report of Investigations 7, 35 p.
- Morey, G.B., Petrology of Keweenawan sandstones in the subsurface of southeastern Minnesota, *in* Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geological Survey, p. 436-449.
- Morey, G.B., 1974, Cyclic sedimentation of the Solor Church Formation (Upper Precambrian, Keweenawan) southeastern Minnesota: Journal of Sedimentary Petrology, 44, p. 872-884.
- Morey, G.B., 1977, Revised Keweenawan subsurface stratigraphy, southeastern Minnesota: Minnesota Geological Survey Report of Investigations 16, 67 p.
- Morey, G.B., 1978, Metamorphism in the Lake Superior region, U.S.A., and its relation to crustal evolution, *in* Fraser, J.A., and Heywood, W.W., eds., Metamorphism in the Canadian Shield: Geological Survey of Canada Paper 78-10, p. 283-314.
- Morey, G.B. and Green, J.C., 1982, Status of the Keweenawn as a stratigraphic unit in the Lake Superior region, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 15-25.
- Morey, G.B. and Ojakangas, R.W., 1982, Keweenawan sedimentary rocks of eastern Minnesota and northwestern Wisconsin, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 135-146.
- Morey, G.B. and Sims, P.K., 1976, Boundary between two Precambrian terranes in Minnesota and its geologic significance: Geological Society of America Bulletin, v. 87, p. 141-152.

- Morey, G.B., Sims, P.K., Cannon, W.F., Mudrey, M.G. Jr., and Southwick, D.L., 1982, Geologic map of the Lake Superior region Minnesota, Wisconsin, and northern Michigan: Minnesota Geological Survey State Map Series S-13, scale 1:1,000,000.
- Mudrey, M.G., Jr., 1979, Geologic summary of the Ashland 2º Quadrangle: Wisconsin Geological and Natural Survey Open-file Report 79-1, 39 p.
- Mudrey, M.G. Jr., Brown, B.A. and Greenberg, J.K., 1982, Bedrock geologic map of Wisconsin: Wisconsin Geological and Natural History Survey, scale 1:1,000,000.
- Murray, G.E., 1965, Indigenous Precambrian petroleum: American Association of Petroleum Geologists Bulletin, v. 49, p. 3-21.
- Murray, G.E., Kaczor, M.J., and McArthur, R.E., 1980, Indigenous Precambrian petroleum revisited: American Association of Petroleum Geologists Bulletin, v. 64, p. 1681-1700.
- Myers, W.D. II, 1971, The sedimentology and tectonic significance of the Bayfield Group (Upper Keweenawan?) Wisconsin and Minnesota: University of Wisconsin, Madison, unpublished Ph.D. dissertation, 259 p.
- Nanz, R.H., 1953, Chemical composition of Precambrian slates with notes on the geochemical evolution of lutites: Journal of Geology, v. 61, p. 51-64.
- Ocola, L.C., and Meyer, R.P., 1973, Central North American Rift System, 1. Structure of the axial zone from seismic and gravimetric data: Journal of Geophysical Research, v. 78, p. 5173-5194.
- Ojakangas, R.W., and Morey, G.B., 1982a, Keweenawan pre-volcanic quartz sandstones and related rocks of the Lake Superior region, *in* Wold, R.J., and Hinze, W.J., eds., Geology and Tectonics of the Lake Superior Basin: Geological Society of America Memoir 156, p. 85-96.
- Ojakangas, R.W., and Morey, G.B., 1982b, Keweenawan sedimentary rocks of the Lake Superior region: A summary, in Wold, R.J., and Hinze, W.J., eds., Geology and Tectonics of the Lake Superior Basin: Geological Society America Memoir 156, p. 157-164.
- Ostrom, M.E., and Slaughter, A.E., 1967, Correlation problems of the Cambrian and Ordovician outcrop areas of the Northern Peninsular [sic] of Michigan: Annual Field Excursion, Michigan Basin Geological Society, p. 1-5.
- Patenaude, R.W., 1966, A regional aeromagnetic survey of Wisconsin, II in Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 111-126.
- Pettijohn, F.J., 1957, Sedimentary rocks (2nd ed.): New York, Harper and Row, 718 p.
- Potter, P.E. and Pettijohn, F.J., 1977, Paleocurrents and basin analysis (2nd ed.): New York, Springer-Verlag, 425 p.

- Qi, F., and Xie-Pei, W., 1984, Significant role of structural fractures in Renqui buried-hill oil field in eastern China: American Association of Petroleum Geologists Bulletin, v. 68, p. 971-982.
- Quanheng, Z., 1984, Jizhong depression, China -- its geologic framework, evolutionary history, and distribution of hydrocarbons: American Association of Petroleum Geologists Bulletin, v. 68, p. 983-992.
- Raasch, G.O., 1950, Current evaluation of the Cambrian-Keweenawan boundary (Wis.): Transactions of Illinois State Academy of Sciences, v. 43, p. 137-150.
- Rudman, A.J., Summerson, C.H., and Hinze, W.J., Geology of basement in Midwestern United States: Bulletin of the American Association of Petroleum Geologists, v. 49, no. 7, p. 894-904.
- Ruiz, J., Jones, L.M., and Kelly, W.C., 1984, Rubidium-strontium dating of ore deposits hosted by Rb-rich rocks, using calcite and other common Sr-bearing minerals: Geology, v. 12, p. 259-262.
- Schopf, J.W., 1968, Microflora of the Bitter Spring Formation, late Precambrian, central Australia: Journal of Paleontology, v. 42, p. 651-688.
- Serpa, L., Setzer, T., Farmer, H., Brown, L., Oliver, J., Kaufman, S., Sharp, J. and Steeples, D.W., 1984, Structure of the southern Keweenawan rift from COCORP survey across the Midcontinent Geophysical Anomaly in northeastern Kansas: Tectonics, 3, p. 367-384.
- Shaw, D.M., Reilly, G.A., Muysson, J.R., Pattenden, G.E., and Campbell, F.E., 1967, An estimate of the chemical composition of the Canadian Precambrian shield: Canadian Journal of Earth Sciences, v. 4, p. 829-853.
- Shicong, G., Dungzhow, Q., Xiaqun, C., Fungten, Y., Huaiyu, Y., Shoude, W., Jingcai, Z., and Sioche, C., 1980, Geologic history of late Proterozoic to Triassic in China and associated hydrocarbons, *in* Mason, J.F., ed., Petroleum Geology in China, Penn Well Publishing Company, Tulsa, Oklahoma, p. 142-153.
- Shirley, K., 1985, Wildcat test Precambrian gas: American Association of Petroleum Geologists Explorer, August, p. 1, 12, and 13.
- Sims, P.K., Cannon, W.F., and Mudrey, M.G., Jr., 1978, Preliminary geologic map of Precambrian rocks in part of northern Wisconsin: U.S. Geological Survey Open-file report 78-318, scale 1:250,000, 3 sheets.
- Sims, P.K., Card, K.D., Morey, G.B., and Peterman, Z.E., 1980, The great lakes tectonic zone a major crustal structure in central North America: Geological Society of America Bulletin, v. 91, p. 690-698.
- Sloan, R.E., [1965], A teacher's guide for geologic field investigations in southeastern Minnesota: Minnesota Department of Education, 19 p.
- Sloan, R.E. and Danes, Z.F., 1962, A geologic and gravity survey of the Belle Plaine area, Minnesota: Minnesota Academy of Science Proceedings, v. 30, p. 49-52.

- Smith, T.J., Steinhart, J.S., and Aldrich, L.T., 1966, Lake Superior crustal structure: Journal of Geophysical Research, v. 71, p. 1141-1172.
- Somanas, C., 1984, A comprehensive geophysical interpretation of the Midcontinent Geophysical Anomaly in northeastern Kansas: University of Kansas, unpublished Master's thesis, 87 p.
- Stauffer, C.R., 1927, Age of the Red Clastic series of Minnesota: Bulletin of the Geological Society of America, v. 38, p. 469-478.
- Steeples, D.W., 1976, Preliminary crustal model for northwest Kansas (abs): EOS, Transactions of the American Geophysical Union, v. 57, p. 961.
- Steinhart, J.S. and Smith, T.J., eds., 1966, The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, 663 p.
- Teselle, R.D., Box, G.L., Luebking, G.A., Bickel, D., and Thames, C.B., 1985, Oil and gas developments in northern Rockies in 1984: American Association of Petroleum Geologists Bulletin, v. 69, p. 1559-1566.
- Thiel, E., 1956, Correlation of gravity anomalies with the Keweenawan geology of Wisconsin and Minnesota: Bulletin of the Geological Society of America, v. 67, p. 1079-1100.
- Thwaites, F.T., 1912, Sandstones of the Wisconsin coast of Lake Superior: Wisconsin Geological and Natural History Survey Bulletin 25, 117 p.
- Thwaites, F.T., 1931, Geologic cross section of central United States, Michigan, Wisconsin, Illinois: Kansas Geological Society, 4th annual Field Conference Guidebook, p. 66-70.
- Thwaites, F.T., 1935, Post-conference day no. 2, Monday, September 2, 1935, Duluth, Minnesota, to Ironwood, Michigan, field trip description, *in* Guidebook of the ninth annual field conference: Kansas Geological Society, p. 221-234.
- Trofimuk, A.A., Vasil'yev, V.G., Oraasev, I.P., Kosaorotov, S.P., Mandel'baum, M.M., Mustafinov, A.N., and Samsnov, V.V., 1969, Main problems of prospecting the Markovo oil field in eastern Siberia: Petroleum Geology, v. 8, p. 13-18.
- Tryhorn, A.D., and Ojakangas, R.W., 1972, Sedimentation and petrology of the upper Precambrian Hinckley Sandstone of east-central Minnesota: *in* Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geological Survey, p. 431-435.
- Tyler, S.A., and Barghoorn, E.S., 1954, Occurrence of structurally preserved plants in Precambrian rocks of the Canadian shield: Science, v. 119, p. 606-608.
- Tyler, S.A., Marsden, R.W., Grout, F.F., and Thiel, G.A., 1940, Studies of the Lake Superior Precambrian by accessory-mineral methods: Bulletin of the Geological Society of America, v. 51, p. 1429-1538.

- Van Hise, C.R. and Leith, C.K., 1911, The geology of the Lake Superior region: U.S. Geological Survey Monograph 52, 641 p.
- Van Schmus, W.R., and Bickford, M.E., 1981, Proterozoic chronology and evolution of the midcontinent region, North America, *in* Kroner, A., ed., Precambrian plate tectonics: Elsevier, Amsterdam, p. 261-296.
- Van Schmus, W.R., and Hinze, W.J., 1985, The midcontinent rift system: Annual Review Earth and Planetary Sciences, 13, p. 345-383.
- Vassoyevich, N.B., Vysotskiy, I.V., Sokolov, B.A., and Tatarenko, Y.I., 1971, Oil-gas potential of late Precambrian deposits: International Geology Review, v. 13, p. 407-418.
- Watts, D.R., 1981, Paleomagnetism of the Fond du Lac Formation and the Eileen and Middle River sections with implications for Keweenawan tectonics and the Grenville problem: Canadian Journal of Earth Science, v. 18, p. 829-841.
- Webb, E.A., 1965, Will Officer and Amadeus basins both be productive?: World Oil, June, p. 160-165.
- Weber, J.R. and Goodacre, A.K., 1966, A reconnaissance underwater gravity survey of Lake Superior, *in* Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 56-65.
- Weiblen, P.W., and Morey, G.B., 1980, A summary of the stratigraphy, petrology, and structure of the Duluth Complex: American Journal of Science, v. 280-A, pt. 1, p. 88-133.
- White, W.S., 1966a, Geologic evidence for crustal structure in the western Lake Superior basin, *in* Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 28-41.
- White, W.S., 1966b, Tectonics of the Keweenawan basin, western Lake Superior region: U.S. Geological Survey Professional Paper 524-E, p. El-E23.
- White, W.S., Cornwall, H.R., and Swanson, R.W., 1953, Bedrock geology of the Ahmeek quadrangle, Michigan: United States Geological Survey Geologic Quadrangle Map GQ 27, scale 1:24,000.
- White, W.S., and Wright, J.C., 1954, The White Pine copper deposit, Ontonagor County, Michigan: Economic Geology, v. 49, p. 675-716.
- Wold, R.J., and Hinze, W.J., eds., 1982, Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, 280 p.
- Wold, R.J., Hutchinson, D.R., and Johnson, T.C., 1982, Topography and surficial structure of Lake Superior bedrock as based on seismic reflection profiles, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 257-272.

- Wold, R.J., and Ostenso, N.A., 1966, Aeromagnetic, gravity, and sub-bottom profiling studies in western Lake Superior, *in* Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 66-94.
- Wolff, R.G. and Huber, N.K., 1973, The Copper Harbor Conglomerate (Middle Keweenawan) on Isle Royale, Michigan, and its regional implications: U.S. Geological Survey Professional Paper 754-B, p. Bl-Bl5.
- Woollard, G.P., 1943, Transcontinental gravitational and magnetic profile of North America and its relation to geologic structure: Bulletin of the Geological Society of America, v. 54, p. 747-790.
- Woollard, G.P., 1951, Annual report of the special committee on the geophysical and geological study of continents, 1950-1951: American Geophysical Union Transactions, 32, p. 634-647.
- Yarger, H.L., 1983, Regional interpretation of Kansas aeromagnetic data: Kansas Geological Survey Geophysics Series 1, 35 p.