IV. UPPER KEWEENAWAN STRATIGRAPHY

SUMMARY STRATIGRAPHY

M.G. Mudrey, Jr. and M.E. Ostrom

The boundary between the uppermost volcanic rock of the Middle Keweenawan and the Upper Keweenawan is not resolved. The volcanic rock grades upward with increasing abundance of interbedded immature volcanic sediments, until no more flows are found. The classical boundary is drawn at the top of the uppermost lava flow; many modern studies suggest that the boundary should be drawn at a lower level (Hubbard, 1975). In Wisconsin the Upper Keweenawan sedimentary rock is divided into two groups with an apparent unconformity between them. This division, with changes in formational names, is generally accepted for Minnesota. In Michigan, however, correlation of the upper group is more difficult. (See figure 2 on page 17.)

ORONTO GROUP

Daniels (1982) considered the three formations of the Oronto Group to be a transgressive-regressive alluvial fan/lacustrine system that filled the (Midcontinent) rift basin during the last stages and following cessation of volcanic activity. The basal unit of the Oronto Group within Wisconsin is the Copper Harbor Conglomerate, which is gradational and interbedded with the upper part of the Portage Lake Lavas. The Copper Harbor Conglomerate is 150 to 2,000 m thick, and is a reddish brown, lithic conglomerate and sandstone (Hite, The conglomerate varies considerably, but consists dominantly of subangular to rounded fragments of Middle Keweenawan volcanics and intrusives, and a lesser amount of Lower Proterozoic rock. The Nonesuch Formation overlies the conglomerate and appears in places to interfinger with it. Barghoorn and others (1965) described the Nonesuch Formation as thinly laminated gray siltstone and black shale, visually distinguishable from enveloping red-brown coarser grained units; conglomeritic horizons occur locally. Both solid and liquid hydrocarbon is found sporadically in the copper-bearing ore zone in the lower 9 m of this formation. Subsurface oil seeps are quite common at the Copper Range Mine in White Pine, and a fresh exposure of fractured shale can yield about 1 liter of oil even after several months. In Wisconsin the maximum thickness on the east is 120 m, but it thins rapidly westward to 40 m near Mellen (Aldrich, 1929, p. 111). The Freda Formation is the major unit of the Oronto Group. It has an estimated thickness of 4,000 m. It is noted for its red color, which is present throughout except for local leaching or bleaching along fractures or within the more porous and permeable coarse units in the upper part of the section. The Freda Formation is both compositionally and texturally immature. The sedimentary structures of the Freda have long been interpreted as evidence of a fluvial depositional environment. Hite (1968, p. 60) provided details on the stratigraphy and sedimentology.

BAYFIELD GROUP

The basal unit of the Bayfield Group is the Orienta Formation, a feldspathic sandstone up to 900 m thick (Myers, 1971). It thins rapidly to the west and pinches out west of Washburn, Wisconsin. The critical lower contact with the underlying Freda Formation is not exposed. The best interpretation is that the Orienta lies with slight angular discordance upon the underlying Freda, and elsewhere it is known to be in fault contact with Middle Keweenawan volcanics. The Devils Island Formation overlies the Orienta Sandstone, is a fine- to

medium-grained quartz sandstone, and is thin bedded and laminated. Although not exposed, the lower contact of the Devils Island with the Orienta appears to be conformable. This formation is estimated to be 100 m thick. The Chequamegon Formation is the youngest formation of the Bayfield Group. The Chequamegon is predominantly a medium-grained grayish red to pale red feld-spathic sandstone. The lower contact of the Chequamegon appears to be gradation with the Devils Island Formation. This sandstone appears to be about 330 m thick. Some data suggest that the Chequamegon may be Cambrian in age (Ostrom and Slaughter, 1967). An alternate interpretation of Upper Keweenawan sedimentary rock is possible. Ostrom recognizes some stratigraphic relationships in the Lake Superior region that suggest to him that the Chequamegon and the Orienta might be correlative, and that the overlying Devils Island might be equivalent to the Galesville Formation of Late Cambrian age. This would necessitate an unconformity at the base of the Devils Island.

JACOBSVILLE FORMATION

A large area of Jacobsville Formation occurs immediately south of the Keweenaw Peninsula and along the Lake Superior shoreline near Marquette, Michigan. It is a thick red bed sequence about 3,500 m thick and consists of sandstone with some conglomerate and siltstone. The Jacobsville is generally assigned to the Upper Keweenawan, although others, such as Dorr and Eschmann (1973), assign the sandstone to the Cambrian. The sandstone is known to overlie Middle Keweenawan volcanics, and to the east the sandstone can be shown to rest on a paleosol (Kalliokoski, 1975). The paleosol formation is significant in that it represents a period of subareal erosion and intense chemical weathering in the source area.

CORRELATION

The Bayfield Group has been correlated with the Jacobsville Formation of the northern Peninsula of Michigan (Thwaites, 1935; Raasch, 1950; Hamblin, 1961; Hite, 1968) and with the Hinckley of Minnesota (Tyler and others, 1940; Raasch, 1950). There is a possibility that it also correlates with all or part of the Cambrian Mt. Simon Sandstone.

The Bayfield Sandstone was named by Lane and Seaman (1907) for exposures of red and brown and white-striped quartz sandstone with streaks of red clay shale located near Jacobsville, Michigan, and which Irving (1883) called the "Eastern Sandstones." This sandstone is conglomeratic in its base where it overlaps older formations.

The Jacobsville Formation differs from the Bayfield in its heavy mineral composition. According to Denning (1949), who sampled 14 outcrops of Jacobsville, 12 outcrops contain epidote and apatite, one contains only apatite, and one contains neither apatite nor epidote. These minerals occur in the Oronto Group and in the Orienta Formation. They are not found in the overlying Devils Island Formation.

Hamblin believes that a signficant break in sedimentation occurred between deposition of the Freda red feldspathic sandstone and the Jacobsville quartz sandstone in the Northern Peninsula. Hamblin (1961) stated that "suggestions of an angular conformity between the Freda and Jacobsville are ... found in several outcrops in Whitefish Bay." In 1958 he reported the existence of a pre-Jacobsville erosion surface. Van Hise and Leith (1911, p. 614) described this as a "profound unconformity ..." and went on to say that "the manner in which the Cambrian sandstone cuts unconformably across the several series of

the Precambrian is well illustrated on the east side of the Precambrian area of the Upper Peninsula of Michigan and northern Wisconsin." In the absence of the Freda Formation, the Jacobsville overlies basement rock.

The feldspar content of the Jacobsville is similar to the whole of the Freda and the Orienta. Analyses of outcrop samples collected from the Jacobsville Formation between Marquette and Munising in the Upper Peninsula of Michigan indicate feldspar contents of from 20 to 40 percent, although some beds may contain less than 5 percent.

The lithologic, mineralogic, and textural character of the Jacobsville, plus paleomagnetism and other characteristics, is interpreted to indicate that the Jacobsville may be equivalent to either or both the Freda and the Orienta.

Rock units in southern Wisconsin and southeastern Minnesota that are tentatively correlated with the Devils Island Formation include the Hinckley Formation of northeastern Minnesota, the "Hinckley-Mt. Simon" of southeastern Minnesota, and the Mt. Simon Sandstone of Wisconsin. The bases for correlation are (1) similar stratigraphic position, namely above either Precambrian crystalline rock or rock of the Oronto Group and below the Eau Claire Formation; (2) lithologic and mineralogic similarity; (3) contact relationships that show conformity and unconformity at the base and conformity and transition at the top; and (4) occurrence within the same geological and structural province, namely the structural feature manifest as the Midcontinent Gravity High.

RESERVOIR CHARACTERISTICS OF THE KEWEENAWAN SUPERGROUP, LAKE SUPERIOR REGION Richard W. Ojakangas

INTRODUCTION

This is a brief review of the stratigraphic, sedimentologic, and petrographic characteristics of the several thousand meter thick, post-volcanic, siliciclastic Keweenawan Supergroup in the Lake Superior region with an emphasis on petroleum reservoir potential. It has been known for several decades that the black Nonesuch Shale, low in the post-volcanic rock column, is rich in organic material and even exudes petroleum in the Copper Range Mine, White Pine, Michigan. During late Precambrian time, many sedimentary and volcanic rock units were deposited in the Lake Superior region. The upper Precambrian rock column can be thought of as consisting of three sequences: pre-volcanic quartz sandstone (Ojakangas and Morey, 1982a), Keweenawan volcanic rock (Green, 1982b), and the post-volcanic sedimentary rock units that are the subject of this paper.

Keweenawan Supergroup rock, a red bed sequence that includes the Oronto Group and the overlying Bayfield Group, and their correlative rock units, are dominated by coarse clastic units that have potential as reservoir rock for petroleum that may have been generated within the Nonesuch Shale during deep burial. Few published data are available on porosity and permeability of these units. Petrography has focused on the framework composition of the sandstone and conglomerate, rather than on diagenesis.

STRATIGRAPHY AND SEDIMENTOLOGY

The post-volcanic sedimentary rock units were deposited in and adjacent to the Midcontinent Rift all along its 1,400 km length, but are exposed only in the

REFERENCES

- Aldrich, H.R., 1929, The geology of the Gogebic Iron Range of Wisconsin: Wisconsin Geological and Natural History Survey Bulletin 71, 279 p.
- Anderson, R.R., and Black, R.A., 1982, Geologic interpretations from geophysical models of the Midcontinent geophysical anomaly in southwest Iowa, in Regional tectonics and seismicity of southwestern Iowa:

 Annual Report of U.S. Nuclear Regulatory Commission NUREG/CR-2548, p. 27-41.
- Arvidson, R.E., Guinness, E.A., Strebeck, J.W., Davies, G.F., and Schulz, K.J., 1982, Image processing applied to gravity and topography data covering the continental U.S.: EOS, Transactions of the American Geophysical Union, 63, p. 261-265.
- Austin, G. S., 1970, Deep stratigraphic test well near Hollandale, Minnesota: Minnesota Geological Survey Report of Investigations 12, 52 p.
- Balashova, M.M., Koblova, A.Z., and Provorov, V.M., 1983, Late Precambrian petroleum formation in the northern Ural-Volga region: International Geology Review, v. 25, p. 1455-1458.
- Barghoorn, E.S., Meinschein, W.G., and Schopf, J.W., 1965, Paleobiology of a Precambrian shale: Science, v. 148, p. 461-472.
- Barghoorn, E.S., and Schopf, J.W., 1966, Micro-organisms three billion years old from the Precambrian of South Africa: Science, 152, p. 758-763.
- Becker, L.E., and Patton, J.B., 1968, World occurrence of petroleum in Pre-Silurian rocks: American Association of Petroleum Geologists Bulletin, v. 52, p. 224-245.
- Brown, A.C., 1971, Zoning in the White Pine copper district, Ontonagon County, Michigan: Economic Geology, v. 66, p. 543-573.
- Brown, L., Jensen, L., Oliver, J., Kaufman, S. and Steiner, D., 1982, Rift structure beneath the Michigan Basin from COCORP profiling: Geology, v. 10, p. 645-649.
- Butler, B.S., and Burbank, W.S., 1929, The copper deposits of Michigan: U.S. Geological Survey Professional Paper 144, 238 p.
- Cannon, W.F., and Davidson, D.M., Jr., 1982, Bedrock geologic map of the Lake Superior region *in* Wold, R.J. and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, plate 1, scale 1:1,000,000.
- Catacosinos, P.A., 1981, Origin and stratigraphic assessment of pre-Mt. Simon clastics (Precambrian) of Michigan Basin: American Association of Petroleum Geologists Bulletin, v. 69, p. 1617-1620.
- Chase, C.G. and Gilmer, T.H., 1973, Precambrian plate tectonics: the Midcontinent Gravity High: Earth and Planetary Science Letters, 21, p. 70-80.

- Chaudhuri, S., and Faure, G., 1967, Geochronology of the Keweenawan rocks, White Pine, Michigan: Economic Geology, v. 62, p. 1011-1033.
- Compton, W., and Arriens, P.A., 1968, The Precambrian geochronology of Australia: Canadian Journal Earth Sciences, v. 5, p. 561-583.
- Coons, R.L., 1966, Precambrian basement geology and Paleozoic structure of the Mid-Continent gravity high: University of Wisconsin, Madison, unpublished Ph.D. dissertation, 167 p.
- Cooper, J.D., Miller, R.H., and Patterson, J., 1986, A trip through time: principles of historical geology: Merrill Publishing Company, 469 p.
- Craddock, C., 1972a, Regional geologic setting, *in* Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geological Survey, p. 281-291.
- Craddock, C., 1972b, Keweenawan geology of east-central and southeastern Minnesota, *in* Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geological Survey, p. 416-424.
- Craddock, C., Mooney, H.M., and Kolehmainen, V., 1970, Simple Bouguer gravity map of Minnesota and northwestern Wisconsin: Minnesota Geological Survey, Miscellaneous Map Series, Map M-10, scale 1:1,000,000.
- Craddock, C., Thiel, E.E., and Gross, B., 1963, A gravity investigation of the Precambrian of southeastern Minnesota and western Wisconsin: Journal of Geophysical Research, v. 68, p. 6015-6032.
- Daniels, P.A., Jr., 1982, Upper Precambrian sedimentary rocks: Oronto Group, Michigan-Wisconsin, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 107-133.
- Davidson, D.M., Jr., 1982, Geological evidence relating to interpretation of the Lake Superior basin structure, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 5-14.
- Davidson, D.M., Jr., and Mudrey, M.G., Jr., 1986, Mid-Continent Rift: New Frontier in an Old Area (abs): American Association of Petroleum Geologists Bulletin, v. 70, p. 579.
- Denning, R.M., 1949, The petrology of the Jacobsville sandstone, Lake Superior: Michigan College of Mineral Technology, Houghton, unpublished Master's thesis.
- Dickas, A.B., 1984, Midcontinent rift system: Precambrian hydrocarbon target: Oil and Gas Journal, October 15, 1984, p. 151-159.
- Dickas, A.B., 1986, Comparative Precambrian stratigraphy and structure along the Midcontinent Rift: American Association of Petroleum Geologists Bulletin, v. 70, p. 225-238.

- Dorr, J.A., and Eschmann, D.F., 1973, Geology of Michigan: University of Michigan Press, Ann Arbor, 476 p.
- DuBois, P.M., 1962, Paleomagnetism and correlation of Keweenawan rocks: Geological Survey of Canada Bulletin 71, 75 p.
- Dunlop, J.S.R., Muir, M.D., Milne, V.A., and Groves, D.I., 1978, A new microfossil assemblage from the Archean of western Australia: Nature, v. 274, p. 676-678.
- Dunshi, Y., and Guangming, Z., 1980, Exploration practice in and prospects of the buried-hill oil fields in north China *in* Mason, J.F., ed., Petroleum Geology in China: Penn Well Publishing Company, Tulsa, Oklahoma, 263 p.
- Durkee, E.F., 1982, Oil and gas developments in Australia in 1981: American Association of Petroleum Geologists Bulletin, v. 66, p. 2321-2348.
- Durkee, E.F., 1983, Oil and gas developments in Australia in 1982: American Association of Petroleum Geologists Bulletin, v. 67, p. 1827-1848.
- Dutton, C.E., and Bradley, R.E., 1970, Lithologic, geophysical, and mineral commodity maps of Precambrian rocks in Wisconsin: U.S. Geological Survey Miscellaneous Geologic Investigations Map 1-631, sheet 3 of 6, scale 1:500,000.
- Eglinton, G., Scott, P.M., Belsky, T., Burlingame, A.L., and Calvin, M., 1964, Hydrocarbons of biological origin from a one-billion years old sediment: Science, v. 145, p. 263-264.
- Elmore, R.D., and Daniels, P.A., Jr., 1980, Depositional system model for Upper Keweenawan Oronto Group sediments, northern peninsula Michigan (abs): American Geophysical Union Transactions, v. 61, p. 1195.
- Engel, A.E.J., Nagy, B., Nagy, L.A., Engel, C.G., Kremp, G.O.W., and Drew, C.M., 1968, Alga-like forms in Onverwacht Series, South Africa: oldest recognized lifelike forms on earth: Science, v. 161, p. 1005-1008.
- Farnham, P.R., 1967, Crustal structure in the Keweenawan province of east central Minnesota and western Wisconsin: University of Minnesota, St. Paul, unpublished Ph.D. dissertation, 464 p.
- Fowler, J.H., and Kuenzi, W.D., 1978, Keweenawan turbidites in Michigan (deep borehole red beds): A foundered basin sequence developed during evolution of a protoceanic rift system: Journal of Geophysical Research, v. 83, p. 5833-5843.
- Galloway, W.E., and Hobday, D.K., 1983, Terriginous clastic depositional systems: Springer-Verlag, 423 p.
- Gardner, F.J., 1963, Amadeus next Aussie oil producer?: Oil and Gas Journal, September 16, 1963, 157 p.

- Glaessner, M.F., 1961, Pre-cambrian animals: Scientific American, v. 204, p. 72-78.
- Grant, U.S., 1901, Preliminary report on the copper-bearing rocks of Douglas County, Wisconsin (2nd ed.): Geological and National History Survey Bulletin 6, 83 p..
- Green, J.C., 1977, Keweenawan plateau volcanism in the Lake Superior region, in Baragar, W.R.A., ed., Volcanic regimes in Canada: Geological Association of Canada Special Paper 16, p. 407-422.
- Green, J.C., 1982, Geologic and geochemical evidence for the nature and development of the Middle Proterozoic (Keweenawan) Midcontinent Rift of North America: Tectonophysics, 94, p. 413-437.
- Green, J.C., 1983, Geologic and geochemical evidence for the nature and development of the Middle Paleozoic (Keweenawan) Midcontinent Rift of North America: Tectonophysics, v. 94, p. 413-437.
- Halbouty, M.T., King, R.E., Klemme, H.D., Dott, R.H., Sr., and Meyerhoff, A.A., 1970, Factors affecting formation of giant oil and gas fields and basin classification, *in* Halbouty, M.T., ed., Geology of giant petroleum fields: American Association of Petroleum Geologists Memoir 14, p. 528-555.
- Halls, H.C., 1966, A review of the Keweenawan geology of the Lake Superior region, *in* Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 3-27.
- Halls, H.C., 1982, Crustal thickness in the Lake Superior region, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 239-243.
- Halls, H.C., and West, G.F., 1971, A seismic refraction survey in Lake Superior: Canadian Journal of Earth Science, v. 8, p. 610-630.
- Hamblin, W.K., 1958, Cambrian sandstones of northern Michigan: Michigan Geological Survey Publication 51, 149 p.
- Hamblin, W.K., 1961, Paleogeographic evolution of the Lake Superior region from Late Keweenawan to Late Cambrian time: Bulletin of the Geological Society of American, v. 72, p. 1-18.
- Hamblin, W.K., 1965, Basement control of Keweenawan and Cambrian sedimentation in Lake Superior region: Bulletin of the American Association of Petroleum Geologists, v. 49, p. 950-958.
- Hatch, J.R., and Morey, G.B., 1985, Hydrocarbon source rock evaluation of Middle Proterozoic Solor Church Formation, North American Mid-Continent Rift System, Rice County, Minnesota: American Association of Petroleum Geologists Bulletin, v. 69, p. 1208-1216.

- Hinze, W.J., Kellogg, R. L., and O'Hara, N.W., 1975, Geophysical studies of basement geology of southern peninsula of Michigan: American Association of Petroleum Geologists Bulletin, v. 59, p. 1562-1584.
- Hinze, W.J., Wold, R.J., and O'Hara, N.W., 1982, Gravity and magnetic anomaly studies of Lake Superior, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 203-222.
- Hite, D.M., 1968, Sedimentology of the Upper Keweenawan sequence of northern Wisconsin and adjacent Michigan; University of Wisconsin, Madison, unpublished Ph.D. dissertation, 202 p.
- Holmes, A., 1965, Principles of physical geology: Ronald Press Company, 1288 p.
- Hubbard, H.A., 1975, Keweenawan geology of the North Ironwood, Ironwood and Little Girls Point quadrangles, Gogebic County, Michigan: U.S. Geological Survey Open-file report OF 75-152, 23 p.
- Irving, R.D., 1883, The copper-bearing rocks of Lake Superior: U.S. Geological Survey Monograph 5, 464 p.
- Johns, R.B., Belsky, T., McGarthy, E.D., Burlingame, A.L., Haug, P. Schoes, H.K., Richter, W., and Calvin, M., 1966, The organic geochemistry of ancient sediments Part II; Geochimica Cosmochimica Acta, v. 30, p. 1191-1222.
- Jones, D.J., 1956, Introduction to microfossils: Harper and Brothers Publishers, 406 p.
- Kalliokoski, J., 1975, Chemistry and mineralogy of Precambrian paleosols in northern Michigan: Geological Society of America Bulletin, v. 86, p. 371-376.
- Kalliokoski, J., 1982, Jacobsville Sandstone, in Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 147-155.
- Kay, M., 1951, North American geosynclines: Geological Society of America Memoir 48, 143 p.
- Kelly, W.C., and Nishioka, G.K., 1985, Precambrian oil inclusions in late veins and the role of hydrocarbons in copper mineralization at White Pine, Michigan: Geology, v. 13, p. 334-337.
- Kemp, A.L.W., Dell, C.J., and Harper, N.S., 1978, Sedimentation rates and a sediment budget for Lake Superior: Journal of Great Lakes Research, p. 276-287.
- King, E.R. and Zietz, I., 1971, Aeromagnetic study of the Midcontinent Gravity High of central United States: Bulletin of the Geological Society of America, v. 82, p. 2187-2207.

- Kingston, D.R., Dishroon, C.P., and Williams, P.A., 1983, Hydrocarbon plays and global basin classification: American Association of Petroleum Geologists Bulletin, v. 67, p. 2194-2198.
- Klasner, J.S., King, E.R., and Jones, W.J., 1985, Geologic interpretation of gravity and magnetic data for northern Michigan and Wisconsin, *in*Hinze, W.J., ed., The utility of regional gravity and magnetic anomaly maps: Society of Exploration Geophysicists, p. 267-286.
- Lane, A.C., and Seaman, A.E., 1907, Notes on the geological section of Michigan, Part 1. The pre-Ordovician: Journal of Geology, v. 15, p. 680-695.
- Lee, C.K., and Kerr, S.D., Jr., 1984, Midcontinent rift a frontier oil province: Oil and Gas Journal, August 13, 1984, p. 145-150.
- Levin, H.L., 1983, The earth through time: Saunders College Publishing, 513 p.
- Lidiak, E.G., 1972, Precambrian rocks in the subsurface of Nebraska: Nebraska Survey Bulletin 26, 41 p.
- Linder, A.W., 1984, Oil and gas development in Australia in 1983: American Association of Petroleum Geologists Bulletin, v. 68, p. 1600-1616.
- Linder, A.W., 1985, Oil and gas development in Australia in 1984: American Association of Petroleum Geologists Bulletin, v. 69, p. 1856-1870.
- Long, D.G.F. and Young, G.M., 1978, Dispersion of cross-stratification as a potential tool in the interpretation of Proterozoic arenites: Journal Sedimentary Petrology, v. 48, p. 857-862.
- Luetgert, J.H. and Meyer, R.P., 1982, Structure of the western basin of Lake Superior from cross structure refraction profiles, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 245-255.
- Lyons, P.L., 1959, The Greenleaf anomaly, a significant gravity feature, *in* Hambleton, W.M., ed., Symposium on the geophysics of Kansas: Kansas State Geological Survey Bulletin 137, p. 105-120.
- Lyons, P.L., and O'Hara, N.W., 1982, Gravity anomaly map of the United States (exclusive of Alaska and Hawaii): Society of Exploration Geophysicists, scale 1:2,500,000, 2 sheets.
- McCulloh, T.H., 1973, Oil and gas, *in* D.A. Brobst and W.P. Pratt, eds., United States mineral resources: U.S. Geological Survey Professional Paper 820, p. 477-496.
- McKirdy, D.M., 1974, Organic geochemistry in Precambrian research: Precambrian Research, v. 1, p. 75-137.
- Meinschein, W.G., 1965, Soudan Formation: Organic extracts of early Precambrian rocks: Science, v. 150, p. 601-605.

- Meinschein, W.G., Barghoorn, E.S., and Schopf, J.W., 1964, Biological remnants in a Precambrian sediment: Science, v. 145, p. 262-263.
- Meyerhoff, A.A., 1980, Geology and petroleum field in Proterozoic and Lower Cambrian strata, Lena-Tunguska petroleum province, eastern Siberia, U.S.S.R., *in* Halbouty, M.T., ed., Giant oil and gas fields of the decade 1968-1978: American Association of Petroleum Geologists Memoir 30, p. 225-256.
- Mooney, H.M., Farnharm, P.R., Johnson, S.H., Volz, G., and Craddock, C., 1970, Seismic studies over the Midcontinent Gravity High in Minnesota and northwestern Wisconsin: Minnesota Geological Survey Report of Investigations 11, 191 p.
- Moore, L.R., Moore, J.R.M., and Spinner, E., 1969, A geomicrobiological study of the Precambrian Nonesuch Shale: Yorkshire Geological Society Proceedings, v. 37, p. 351-394.
- Morey, G.B., 1967, Stratigraphy and petrology of the type Fond du Lac Formation, Duluth, Minnesota: Minnesota Geological Survey Report of Investigations 7, 35 p.
- Morey, G.B., Petrology of Keweenawan sandstones in the subsurface of southeastern Minnesota, *in* Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geological Survey, p. 436-449.
- Morey, G.B., 1974, Cyclic sedimentation of the Solor Church Formation (Upper Precambrian, Keweenawan) southeastern Minnesota: Journal of Sedimentary Petrology, 44, p. 872-884.
- Morey, G.B., 1977, Revised Keweenawan subsurface stratigraphy, southeastern Minnesota: Minnesota Geological Survey Report of Investigations 16, 67 p.
- Morey, G.B., 1978, Metamorphism in the Lake Superior region, U.S.A., and its relation to crustal evolution, *in* Fraser, J.A., and Heywood, W.W., eds., Metamorphism in the Canadian Shield: Geological Survey of Canada Paper 78-10, p. 283-314.
- Morey, G.B. and Green, J.C., 1982, Status of the Keweenawn as a stratigraphic unit in the Lake Superior region, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 15-25.
- Morey, G.B. and Ojakangas, R.W., 1982, Keweenawan sedimentary rocks of eastern Minnesota and northwestern Wisconsin, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 135-146.
- Morey, G.B. and Sims, P.K., 1976, Boundary between two Precambrian terranes in Minnesota and its geologic significance: Geological Society of America Bulletin, v. 87, p. 141-152.

- Morey, G.B., Sims, P.K., Cannon, W.F., Mudrey, M.G. Jr., and Southwick, D.L., 1982, Geologic map of the Lake Superior region Minnesota, Wisconsin, and northern Michigan: Minnesota Geological Survey State Map Series S-13, scale 1:1,000,000.
- Mudrey, M.G., Jr., 1979, Geologic summary of the Ashland 2º Quadrangle: Wisconsin Geological and Natural Survey Open-file Report 79-1, 39 p.
- Mudrey, M.G. Jr., Brown, B.A. and Greenberg, J.K., 1982, Bedrock geologic map of Wisconsin: Wisconsin Geological and Natural History Survey, scale 1:1,000,000.
- Murray, G.E., 1965, Indigenous Precambrian petroleum: American Association of Petroleum Geologists Bulletin, v. 49, p. 3-21.
- Murray, G.E., Kaczor, M.J., and McArthur, R.E., 1980, Indigenous Precambrian petroleum revisited: American Association of Petroleum Geologists Bulletin, v. 64, p. 1681-1700.
- Myers, W.D. II, 1971, The sedimentology and tectonic significance of the Bayfield Group (Upper Keweenawan?) Wisconsin and Minnesota: University of Wisconsin, Madison, unpublished Ph.D. dissertation, 259 p.
- Nanz, R.H., 1953, Chemical composition of Precambrian slates with notes on the geochemical evolution of lutites: Journal of Geology, v. 61, p. 51-64.
- Ocola, L.C., and Meyer, R.P., 1973, Central North American Rift System, 1. Structure of the axial zone from seismic and gravimetric data: Journal of Geophysical Research, v. 78, p. 5173-5194.
- Ojakangas, R.W., and Morey, G.B., 1982a, Keweenawan pre-volcanic quartz sandstones and related rocks of the Lake Superior region, *in* Wold, R.J., and Hinze, W.J., eds., Geology and Tectonics of the Lake Superior Basin: Geological Society of America Memoir 156, p. 85-96.
- Ojakangas, R.W., and Morey, G.B., 1982b, Keweenawan sedimentary rocks of the Lake Superior region: A summary, in Wold, R.J., and Hinze, W.J., eds., Geology and Tectonics of the Lake Superior Basin: Geological Society America Memoir 156, p. 157-164.
- Ostrom, M.E., and Slaughter, A.E., 1967, Correlation problems of the Cambrian and Ordovician outcrop areas of the Northern Peninsular [sic] of Michigan: Annual Field Excursion, Michigan Basin Geological Society, p. 1-5.
- Patenaude, R.W., 1966, A regional aeromagnetic survey of Wisconsin, II in Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 111-126.
- Pettijohn, F.J., 1957, Sedimentary rocks (2nd ed.): New York, Harper and Row, 718 p.
- Potter, P.E. and Pettijohn, F.J., 1977, Paleocurrents and basin analysis (2nd ed.): New York, Springer-Verlag, 425 p.

- Qi, F., and Xie-Pei, W., 1984, Significant role of structural fractures in Renqui buried-hill oil field in eastern China: American Association of Petroleum Geologists Bulletin, v. 68, p. 971-982.
- Quanheng, Z., 1984, Jizhong depression, China -- its geologic framework, evolutionary history, and distribution of hydrocarbons: American Association of Petroleum Geologists Bulletin, v. 68, p. 983-992.
- Raasch, G.O., 1950, Current evaluation of the Cambrian-Keweenawan boundary (Wis.): Transactions of Illinois State Academy of Sciences, v. 43, p. 137-150.
- Rudman, A.J., Summerson, C.H., and Hinze, W.J., Geology of basement in Midwestern United States: Bulletin of the American Association of Petroleum Geologists, v. 49, no. 7, p. 894-904.
- Ruiz, J., Jones, L.M., and Kelly, W.C., 1984, Rubidium-strontium dating of ore deposits hosted by Rb-rich rocks, using calcite and other common Sr-bearing minerals: Geology, v. 12, p. 259-262.
- Schopf, J.W., 1968, Microflora of the Bitter Spring Formation, late Precambrian, central Australia: Journal of Paleontology, v. 42, p. 651-688.
- Serpa, L., Setzer, T., Farmer, H., Brown, L., Oliver, J., Kaufman, S., Sharp, J. and Steeples, D.W., 1984, Structure of the southern Keweenawan rift from COCORP survey across the Midcontinent Geophysical Anomaly in northeastern Kansas: Tectonics, 3, p. 367-384.
- Shaw, D.M., Reilly, G.A., Muysson, J.R., Pattenden, G.E., and Campbell, F.E., 1967, An estimate of the chemical composition of the Canadian Precambrian shield: Canadian Journal of Earth Sciences, v. 4, p. 829-853.
- Shicong, G., Dungzhow, Q., Xiaqun, C., Fungten, Y., Huaiyu, Y., Shoude, W., Jingcai, Z., and Sioche, C., 1980, Geologic history of late Proterozoic to Triassic in China and associated hydrocarbons, *in* Mason, J.F., ed., Petroleum Geology in China, Penn Well Publishing Company, Tulsa, Oklahoma, p. 142-153.
- Shirley, K., 1985, Wildcat test Precambrian gas: American Association of Petroleum Geologists Explorer, August, p. 1, 12, and 13.
- Sims, P.K., Cannon, W.F., and Mudrey, M.G., Jr., 1978, Preliminary geologic map of Precambrian rocks in part of northern Wisconsin: U.S. Geological Survey Open-file report 78-318, scale 1:250,000, 3 sheets.
- Sims, P.K., Card, K.D., Morey, G.B., and Peterman, Z.E., 1980, The great lakes tectonic zone a major crustal structure in central North America: Geological Society of America Bulletin, v. 91, p. 690-698.
- Sloan, R.E., [1965], A teacher's guide for geologic field investigations in southeastern Minnesota: Minnesota Department of Education, 19 p.
- Sloan, R.E. and Danes, Z.F., 1962, A geologic and gravity survey of the Belle Plaine area, Minnesota: Minnesota Academy of Science Proceedings, v. 30, p. 49-52.

- Smith, T.J., Steinhart, J.S., and Aldrich, L.T., 1966, Lake Superior crustal structure: Journal of Geophysical Research, v. 71, p. 1141-1172.
- Somanas, C., 1984, A comprehensive geophysical interpretation of the Midcontinent Geophysical Anomaly in northeastern Kansas: University of Kansas, unpublished Master's thesis, 87 p.
- Stauffer, C.R., 1927, Age of the Red Clastic series of Minnesota: Bulletin of the Geological Society of America, v. 38, p. 469-478.
- Steeples, D.W., 1976, Preliminary crustal model for northwest Kansas (abs): EOS, Transactions of the American Geophysical Union, v. 57, p. 961.
- Steinhart, J.S. and Smith, T.J., eds., 1966, The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, 663 p.
- Teselle, R.D., Box, G.L., Luebking, G.A., Bickel, D., and Thames, C.B., 1985, Oil and gas developments in northern Rockies in 1984: American Association of Petroleum Geologists Bulletin, v. 69, p. 1559-1566.
- Thiel, E., 1956, Correlation of gravity anomalies with the Keweenawan geology of Wisconsin and Minnesota: Bulletin of the Geological Society of America, v. 67, p. 1079-1100.
- Thwaites, F.T., 1912, Sandstones of the Wisconsin coast of Lake Superior: Wisconsin Geological and Natural History Survey Bulletin 25, 117 p.
- Thwaites, F.T., 1931, Geologic cross section of central United States, Michigan, Wisconsin, Illinois: Kansas Geological Society, 4th annual Field Conference Guidebook, p. 66-70.
- Thwaites, F.T., 1935, Post-conference day no. 2, Monday, September 2, 1935, Duluth, Minnesota, to Ironwood, Michigan, field trip description, *in* Guidebook of the ninth annual field conference: Kansas Geological Society, p. 221-234.
- Trofimuk, A.A., Vasil'yev, V.G., Oraasev, I.P., Kosaorotov, S.P., Mandel'baum, M.M., Mustafinov, A.N., and Samsnov, V.V., 1969, Main problems of prospecting the Markovo oil field in eastern Siberia: Petroleum Geology, v. 8, p. 13-18.
- Tryhorn, A.D., and Ojakangas, R.W., 1972, Sedimentation and petrology of the upper Precambrian Hinckley Sandstone of east-central Minnesota: *in* Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geological Survey, p. 431-435.
- Tyler, S.A., and Barghoorn, E.S., 1954, Occurrence of structurally preserved plants in Precambrian rocks of the Canadian shield: Science, v. 119, p. 606-608.
- Tyler, S.A., Marsden, R.W., Grout, F.F., and Thiel, G.A., 1940, Studies of the Lake Superior Precambrian by accessory-mineral methods: Bulletin of the Geological Society of America, v. 51, p. 1429-1538.

- Van Hise, C.R. and Leith, C.K., 1911, The geology of the Lake Superior region: U.S. Geological Survey Monograph 52, 641 p.
- Van Schmus, W.R., and Bickford, M.E., 1981, Proterozoic chronology and evolution of the midcontinent region, North America, *in* Kroner, A., ed., Precambrian plate tectonics: Elsevier, Amsterdam, p. 261-296.
- Van Schmus, W.R., and Hinze, W.J., 1985, The midcontinent rift system: Annual Review Earth and Planetary Sciences, 13, p. 345-383.
- Vassoyevich, N.B., Vysotskiy, I.V., Sokolov, B.A., and Tatarenko, Y.I., 1971, Oil-gas potential of late Precambrian deposits: International Geology Review, v. 13, p. 407-418.
- Watts, D.R., 1981, Paleomagnetism of the Fond du Lac Formation and the Eileen and Middle River sections with implications for Keweenawan tectonics and the Grenville problem: Canadian Journal of Earth Science, v. 18, p. 829-841.
- Webb, E.A., 1965, Will Officer and Amadeus basins both be productive?: World Oil, June, p. 160-165.
- Weber, J.R. and Goodacre, A.K., 1966, A reconnaissance underwater gravity survey of Lake Superior, *in* Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 56-65.
- Weiblen, P.W., and Morey, G.B., 1980, A summary of the stratigraphy, petrology, and structure of the Duluth Complex: American Journal of Science, v. 280-A, pt. 1, p. 88-133.
- White, W.S., 1966a, Geologic evidence for crustal structure in the western Lake Superior basin, *in* Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 28-41.
- White, W.S., 1966b, Tectonics of the Keweenawan basin, western Lake Superior region: U.S. Geological Survey Professional Paper 524-E, p. El-E23.
- White, W.S., Cornwall, H.R., and Swanson, R.W., 1953, Bedrock geology of the Ahmeek quadrangle, Michigan: United States Geological Survey Geologic Quadrangle Map GQ 27, scale 1:24,000.
- White, W.S., and Wright, J.C., 1954, The White Pine copper deposit, Ontonagor County, Michigan: Economic Geology, v. 49, p. 675-716.
- Wold, R.J., and Hinze, W.J., eds., 1982, Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, 280 p.
- Wold, R.J., Hutchinson, D.R., and Johnson, T.C., 1982, Topography and surficial structure of Lake Superior bedrock as based on seismic reflection profiles, *in* Wold, R.J., and Hinze, W.J., eds., Geology and tectonics of the Lake Superior basin: Geological Society of America Memoir 156, p. 257-272.

- Wold, R.J., and Ostenso, N.A., 1966, Aeromagnetic, gravity, and sub-bottom profiling studies in western Lake Superior, *in* Steinhart, J.S., and Smith, T.J., eds., The earth beneath the continents: American Geophysical Union Geophysical Monograph 10, p. 66-94.
- Wolff, R.G. and Huber, N.K., 1973, The Copper Harbor Conglomerate (Middle Keweenawan) on Isle Royale, Michigan, and its regional implications: U.S. Geological Survey Professional Paper 754-B, p. Bl-Bl5.
- Woollard, G.P., 1943, Transcontinental gravitational and magnetic profile of North America and its relation to geologic structure: Bulletin of the Geological Society of America, v. 54, p. 747-790.
- Woollard, G.P., 1951, Annual report of the special committee on the geophysical and geological study of continents, 1950-1951: American Geophysical Union Transactions, 32, p. 634-647.
- Yarger, H.L., 1983, Regional interpretation of Kansas aeromagnetic data: Kansas Geological Survey Geophysics Series 1, 35 p.